14 research outputs found

    the case study of an innovative small scale biomass waste gasification heat and power plant contextualized in a farm

    Get PDF
    Abstract The use of biomass waste in high efficient low pollutants emissions micro-cogeneration plants overpasses the main biomass barriers: competition with the food and material uses, dispersion of a low energy density fuel and high emissions. Evaluations of present technical aspects, economic benefits and their future projections are very important to bring into focus the needs of the technological development of this energy application. This paper is focused on a small (250 kWth) steam gasification fluidized bed and hot gas conditioning system, contextualized in the case study of a farm situated near Rome. Since most of usable biomass waste comes from agriculture, appraisal of applicability to real rural contexts deserves closer examination, considering the necessity of a small size solution as well. A feasibility study of an actual employment of this energy system has included: biomass availability and energy consumption analysis, biomass and gasification tests, power plant sizing, using experimental data and chemcad simulation. Finally an economic analysis has been carried out by varying the main economic parameters. Olive pruning are confirmed as very suitable, and in this case, able to satisfy the farm energy consumption. Global electrical efficiency of 25% can be achieved without any auxiliary fuel consumption. Consumption of 60% of the heat generated are required, meanwhile investment and biomass costs up to 8000 €/kW and 100 €/t can be sustained, especially if the farm electricity cost are higher than 0.15 €/kWh

    Poplar from phytoremediation as a renewable energy source:gasification properties and pollution analysis

    Get PDF
    Biomass gasification is a very efficient process to produce clean energy in the form of a fuel gas (syngas). Hazelnut shells and poplar have good energy production potential and they are abundant in nature. Hazelnut shells have the characteristics of a very good fuel and poplar is among the fastest growing trees; furthermore, poplar demonstrated the capability to absorb organic contaminants (i.e. heavy metals) from the soil in which they are cultivated. However, poplar is not usually used for biomass gasification and its potential is not fully assessed. Here, 3 types of biomass, hazelnut shells (HS), simple poplar (P) and poplar coming from a phytoremediation procedure (PHYP), were chosen as representative samples to be characterized and tested in a steam gasification process carried out on a bench scale fluidized bed gasifier. A comparison is reported on gasification results, such as gas composition, tar production and gas yield for the biomass feedstocks mentioned above. It was concluded that hazelnut shells and poplar (P and PHYP) could be easily gasified in a fluidized bed gasifier, thus producing a good quality gas with low polluting by-products. The PHYP sample showed lower tar content and higher gas yield. It is guessed that Ca and Mg, found in higher quantities in the PHYP sample, could have had a catalytic effect in tar reforming thus producing lower quantity of heavy hydrocarbons

    Steam Gasification of Lignite in a Bench-Scale Fluidized-Bed Gasifier Using Olivine as Bed Material

    Get PDF
    The gasification of lignite could be a promising sustainable alternative to combustion, because it causes reduced emissions and allows the production of syngas, which is a versatile gaseous fuel that can be used for cogeneration, Fischer-Tropsch synthesis, or the synthesis of other bio-fuels, such as methanol. For the safe and smooth exploitation of syngas, it is fundamental to have a high quality gas, with a high content of H2 and CO and minimum content of pollutants, such as particulate and tars. In this work, experimental tests on lignite gasification are carried out in a bench-scale fluidized-bed reactor with olivine as bed material, chosen for its catalytic properties that can enhance tar reduction. Some operating parameters were changed throughout the tests, in order to study their influence on the quality of the syngas produced, and pressure fluctuation signals were acquired to evaluate the fluidization quality and diagnose correlated sintering or the agglomeration of bed particles. The e ect of temperature and small air injections in the freeboard were investigated and evaluated in terms of the conversion eciencies, gas composition, and tar produced.The authors kindly acknowledge the financial support of the European Project LIG2LIQ (RFCS-01-2017 GA796585) co-funded by the European Commission managed Research Fund for Coal and Steel (RFCS)

    Study of Energy Valorization of Disposable Masks via Thermochemical Processes: Devolatilization Tests and Simulation Approach

    No full text
    The COVID-19 pandemic exacerbated the use of medical protective equipment, including face masks, to protect the individual from the virus. This work studies the feasibility of using these materials as fuel for thermochemical processes for the production of syngas. A preliminary physic-chemical characterization was made by means of moisture and ash determination, thermogravimetric analysis, X-ray fluorescence. Afterward, pyrolysis and gasification tests were executed in a laboratory-scale fluidized bed reactor with chirurgical and FFP2 masks investigating four temperature levels and three different operating conditions (fluidizing agents and dry/wet sample). A qualitative and quantitative analysis of condensable aromatic hydrocarbons in the produced gas, collected during the test campaign, was performed employing a gas chromatograph-mass spectrometer. The experimental data from the tests were used to propose a hybrid approach to simulate the gasification process, based on experimental laws for the devolatilization step and a thermodynamic equilibrium approach for char gasification. The resulting data were compared with a thermodynamic equilibrium model, showing that the new approach captures non-equilibrium effects always present in real gasifiers operation

    WP2T3_DataN4_ Gasification tests with catalytic filter

    No full text
    Raw data of results from Synergic Effects of Bed Materials and Catalytic Filter Candle for the Conversion of Tar during Biomass Steam Gasification Energies 2023, 16(2), 595; https://doi.org/10.3390/en1602059

    Cold model testing of an innovative dual bubbling fluidized bed steam gasifier

    No full text
    Biomass gasification by a dual fluidized bed reactor is a very promising process to produce a hydrogen rich syngas from biomass wastes. In this process, the bed material circulation must be enough to transport heat from the combustor to the steam gasifier, and at the same time siphons/loop-seals must be properly designed to avoid gas leakage between the two reactor chambers (such as N2 from the combustor to the gasifier). A cold model of an innovative pilot scale dual bubbling fluidized bed gasifier (100 kWth as biomass input) has been realized. The Hybrid Lagrangian Particle Tracking (HLPT) technique and tracer gas analysis, both applied to the cold model, have been used to evaluate the flow rate of bed material circulation and the gas leakage between the steam gasification and the combustion chambers. The results have shown that the bed material circulation is 2–3 times the minimum required to assure allothermal gasification, while gas leakage is negligible for every operating condition evaluated experimentally

    Synergic Effects of Bed Materials and Catalytic Filter Candle for the Conversion of Tar during Biomass Steam Gasification

    No full text
    This work concerns the activities of the European project BLAZE that aims to integrate a pilot-scale gasifier unit with a Solid Oxide Fuel Cell (SOFC). The objective is to identify the optimal operating conditions for a gasifier and hot gas cleaning and conditioning unit to produce H2-rich syngas with contaminants levels within the limits for the safe operation of the SOFC (750 mg/Nm3 and 75 mg/Nm3 for toluene and naphthalene, respectively). Experimental tests were carried out on a bench-scale gasification plant with a catalytic filter candle placed in the freeboard, to study the influence of temperature (1032 up to 1137 K), bed materials (olivine or olivine/dolomite 80/20%), and a nickel-based catalyst. The tests with a ceramic filter candle filled with catalyst and the mixture of olivine and dolomite in the bed gave the best results in terms of gas composition and gas yield, but the tar content was still higher than the limits for the SOFC. To increase the residence time of the gas in the catalytic bed a new metallic filter candle was tested. This candle, with almost the same external volume, allowed doubling the amount of catalyst used. Under these conditions, the content of toluene and naphthalene was reduced below 150 and 50 mg/Nm3, respectively

    Steam gasification of lignite and solid recovered fuel (SRF) in a bench scale fluidized bed gasifier

    No full text
    The reduction of CO2 emissions and solid waste disposal are critical issues with high importance for the environmental protection. Gasification is a promising process for sustainable energy production, because it can produce a versatile gaseous fuel starting from a wide range of organic feedstocks, and with reduced greenhouse gas emissions compared to combustion. Lignite is an abundant carbonaceous resource in Europe and in this work, gasification tests were carried out with lignite and a lignite and Solid Recovered Fuel (SRF) mixture, to evaluate the quality of gas produced from co-gasification of waste materials, in view of the final uses of the gas. Experimental gasification tests were carried out in a bench scale fluidized bed gasifier at different operating temperatures; the results were evaluated in terms of gas composition, tar content and conversion rates. In addition, characterization analyses were carried out on materials before and after the tests, and pressure fluctuation signals were analysed in order to evaluate the fluidization quality of the bed inventory. 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-NDlicenseThe authors kindly acknowledge the financial support of the European Project LIG2LIQ (RFCS-01-2017 GA796585) co-funded by the European Commission managed Research Fund for Coal and Steel (RFCS)

    Preliminary Results of Biomass Gasification Obtained at Pilot Scale with an Innovative 100 kWth Dual Bubbling Fluidized Bed Gasifier

    No full text
    Biomass gasification is a favourable process to produce a H2-rich fuel gas from biogenic waste materials. In particular, the dual bubbling fluidized bed (DBFB) technology consists of the separation of the combustion chamber, fed with air, from the gasification chamber, fed with steam, allowing to obtain a concentrated syngas stream without N2 dilution. In a previous work, an innovative design of a DBFB reactor was developed and its hydrodynamics tested in a cold model; in this work, the novel gasifier was realized at pilot scale (100 kWth) and operated for preliminary biomass gasification tests. The results showed a high-quality syngas, composed of H2 = 35%, CO = 23%, CO2 = 20%, and CH4 = 11%, as a confirmation of the design efficacy in the separation of the reaction chambers. The dry gas yield obtained was 1.33 Nm3/kg of biomass feedstock and the carbon conversion was 73%. Tars were sampled and measured both in the raw syngas, giving a content of 12 g/Nm3, and downstream from a traditional conditioning system composed of a cyclone and a water scrubber, showing a residual tar content of 3 g/Nm3, mainly toluene. The preliminary tests showed promising results; further gasification tests are foreseen to optimize the main process parameters
    corecore